12 research outputs found

    Surrogate modeling of RF circuit blocks

    Get PDF
    Surrogate models are a cost-effective replacement for expensive computer simulations in design space exploration. Literature has already demonstrated the feasibility of accurate surrogate models for single radio frequency (RF) and microwave devices. Within the European Marie Curie project O-MOORE-NICE! (Operational Model Order Reduction for Nanoscale IC Electronics) we aim to investigate the feasibility of the surrogate modeling approach for entire RF circuit blocks. This paper presents an overview about the surrogate model type selection problem for low noise amplifier modeling

    A general weak nonlinearity model for LNAs

    Get PDF
    This paper presents a general weak nonlinearity model that can be used to model, analyze and describe the distortion behavior of various low noise amplifier topologies in both narrowband and wideband applications. Represented by compact closed-form expressions our model can be easily utilized by both circuit designers and LNA design automation algorithms.\ud Simulations for three LNA topologies at different operating conditions show that the model describes IM components with an error lower than 0.1% and a one order of magnitude faster response time. The model also indicates that for narrowband IM2@w1-w2 all the nonlinear capacitances can be neglected while for narrowband IM3 the nonlinear capacitances at the drainterminal can be neglected

    RF Circuit linearity optimization using a general weak nonlinearity model

    Get PDF
    This paper focuses on optimizing the linearity in known RF circuits, by exploring the circuit design space that is usually available in today’s deep submicron CMOS technologies. Instead of using brute force numerical optimizers we apply a generalized weak nonlinearity model that only involves AC transfer functions to derive simple equations for obtaining design insights. The generalized weak nonlinearity model is applied to three known RF circuits: a cascode common source amplifier, a common gate LNA and a CMOS attenuator. It is shown that in deep submicron CMOS technologies the cascode transistor in both the common source amplifier and in the common gate amplifier significantly contributes IM3 distortion. Some design insights are presented for reducing the cascode transistor related distortion, among which moderate inversion biasing that improves IIP3 by 10 dB up to 5 GHz in a 90 nm CMOS process. For the attenuator, a wideband IM3 cancellation technique is introduced and demonstrated using simulations

    Measuring student ability, classifying schools, and detecting item bias at school level, based on student-level dichotomous items

    No full text
    In educational measurement, responses of students on items are used not only to measure the ability of students, but also to evaluate and compare the performance of schools. Analysis should ideally account for the multilevel structure of the data, and school-level processes not related to ability, such as working climate and administration conditions, need to be separated from student and school ability. However, in educational studies such as Programme for International Student Assessment, Trends in International Mathematics and Science Study, and COOL5–18, this is hardly ever done. This study presents a model that simultaneously accounts for the nested structure, controls student ability for processes at school level, classifies schools to monitor and compare schools, and tests for school-level item bias

    Noise and Nonlinearity Modeling of Active Mixers for Fast and Accurate Estimation

    Get PDF
    This paper presents a model of active mixers for a fast and accurate estimation of noise and nonlinearity. Based on closed-form expressions, this model estimates the noise figure, IIP3, and IIP2 of the time-varying mixer by a limited number of time-invariant circuit calculations. The model shows that the decreasing transistor output resistance, together with the low supply voltage in deep-submicrometer technologies, significantly contributes to the flicker-noise leakage. Design insights for low flicker noise are then presented. The model also shows that the slope of the LO signal has a significant effect on IIP2, while it has a little effect on IIP3. A new IP2 calibration technique using slope tuning is presented.\ud \u

    Stepwise Latent Class Models for Explaining Group-Level Outcomes Using Discrete Individual-Level Predictors

    No full text
    <div><p>Explaining group-level outcomes from individual-level predictors requires aggregating the individual-level scores to the group level and correcting the group-level estimates for measurement errors in the aggregated scores. However, for discrete variables it is not clear how to perform the aggregation and correction. It is shown how stepwise latent class analysis can be used to do this. First, a latent class model is estimated in which the scores on a discrete individual-level predictor are used to construct group-level latent classes. Second, this latent class model is used to aggregate the individual-level predictor by assigning the groups to the latent classes. Third, a group-level analysis is performed in which the aggregated measures are related to the remaining group-level variables while correcting for the measurement error in the class assignments. This stepwise approach is introduced in a multilevel mediation model with a single individual-level mediator, and compared to existing methods in a simulation study. We also show how a mediation model with multiple group-level latent variables can be used with multiple individual-level mediators and this model is applied to explain team productivity (group level) as a function of job control (individual level), job satisfaction (individual level), and enriched job design (group level).</p></div

    Extensive Investigation of Time-Dependent Breakdown of GaN-HEMTs Submitted to OFF-State Stress

    No full text
    This paper reports the experimental demonstration of time-dependent dielectric breakdown in GaN-based high-electron mobility transistors (HEMTs) submitted to OFF-state stress. Based on combined breakdown measurements, constant voltage stress tests, and 2-D simulations, we demonstrate the following relevant results. First, GaN-based HEMTs with a breakdown voltage higher than 1000 V (evaluated by dc measurements) may show time-dependent failure when exposed to OFF-state stress with VDS in the range 600-700 V. Second, time-to-failure (TTF) is Weibull-distributed, and has an exponential dependence on the stress voltage level. Third, time-dependent breakdown is ascribed to the failure of the SiN dielectric at the edge of the gate overhang, on the drain side. Fourth, 2-D simulations confirm that-in this region-the electric field exceeds 6 MV/cm, i.e., the dielectric strength of SiN. Finally, we demonstrate that by limiting the electric field in the nitride through epitaxy and process improvements, it is possible to increase the TTF by three orders of magnitude. © 1963-2012 IEEE

    Impact of Donor Traps on the 2DEG and Electrical Behavior of AlGaN/GaN MISFETs

    No full text
    As an important step in understanding trap-related mechanisms in AlGaN/GaN transistors, the physical properties of surface states have been analyzed through the study of the transfer characteristics of a MISFET. This letter focused initially on the relationship between donor parameters (concentration and energy level) and electron density in the channel in AlGaN/GaN heterostructures. This analysis was then correlated to dc and pulsed measurements of the transfer characteristics of a MISFET, where the gate bias was found to modulate either the channel density or the donor states. Traps-free and traps-frozen TCAD simulations were performed on an equivalent device to capture the donor behavior. A donor concentration of 1.14Ă—1013 cm-2 with an energy level located 0.2 eV below the conduction band edge gave the best fit to measurements. With the approach described here, we were able to analyze the region of the MISFET that corresponds to the drift region of a conventional HEMT

    Categorical Causal Modeling

    No full text
    corecore